Discrete Lie Advection of Differential Forms

نویسندگان

  • Patrick Mullen
  • Alexander McKenzie
  • Dmitry Pavlov
  • L. Durant
  • Yiying Tong
  • Eva Kanso
  • Jerrold E. Marsden
  • Mathieu Desbrun
چکیده

In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartan’s homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HOLA: a High-Order Lie Advection of Discrete Differential Forms

The Lie derivative, and Exterior Calculus in general, is ubiquitous in the elegant geometric interpretation of many dynamical systems. We extend recent trends towards a Discrete Exterior Calculus by introducing a discrete framework for the Lie derivative defined on differential forms, including a WENO based numerical scheme for its implementation. The usefulness of this operator is demonstrated...

متن کامل

Eulerian Geometric Discretizations of Manifolds and Dynamics

This thesis explores new methods for geometric, structure-preserving Eulerian discretizations of dynamics, including Lie advection and incompressible fluids, and the manifolds in which these dynamics occur. The result is a novel method for discrete Lie advection of differential forms, a new family of structure-preserving fluid integrators, and a new set of energies for optimizing meshes appropr...

متن کامل

Upwind schemes for scalar advection-dominated problems in the discrete exterior calculus

We present the discrete exterior calculus (DEC) to solve discrete partial differential equations on discrete objects such as cell complexes. To cope with advection-dominated problems, we introduce a novel stabilization technique to the DEC. To this end, we use the fact that the DEC coincides in special situations with known discretization schemes such as finite volumes or finite differences. Th...

متن کامل

Simulations of transport in one dimension

Advection-dispersion equation is solved in numerically by using combinations of differential quadrature method (DQM) and various time integration techniques covering some explicit or implicit single and multi step methods. Two different initial boundary value problems modeling conservative and nonconservative transports of some substance represented by initial data are chosen as test problems. ...

متن کامل

Space-time radial basis function collocation method for one-dimensional advection-diffusion problem

The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011